Finite Difference Analysis of a flat plate
Evan Selin & Terrance Hess
Find temperature at points throughout asquare plate subject to several types ofboundary conditions
Boundary Conditions:
4 Constant Temperature surfaces
3 Constant Temperatures and 1 heat flux surface
2 Constant Temperatures and 2 heat flux surfaces
Automate the construction of solver matrices
Goals
Required Properties:
Temperatures at eachboundary
Conductivity, k
Heat flux, q” (W/m2)
Positive flux enteringplate
Problem Set Up
T4
T1
T2
T3
q”
T1
T2
T3
q”1
T1
q”2
T3
Equations used:
Problem Set Up
Determine (x,y) positionof each node
Create finite differenceequations for desired setof boundary conditions
Build augmented matrixfor solution
Solve matrices fortemperatures at eachnode (matrix inversion)
Build algorithm toautomatically generatesolution matrix
Process
12
-4
2
0
0
1
0
0
0
0
0
0
0
1
-4
1
0
0
1
0
0
0
0
0
0
0
1
-4
1
0
0
1
0
0
0
0
0
0
0
1
-4
0
0
0
1
0
0
0
0
1
0
0
0
-4
2
0
0
1
0
0
0
0
1
0
0
1
-4
1
0
0
1
0
0
0
0
1
0
0
1
-4
1
0
0
1
0
0
0
0
1
0
0
1
-4
0
0
0
1
0
0
0
0
1
0
0
0
-4
2
0
0
0
0
0
0
0
1
0
0
1
-4
1
0
0
0
0
0
0
0
1
0
0
1
-4
1
0
0
0
0
0
0
0
1
0
0
1
-4
Coefficient Matrix for 1heat flux
T1 = 35 ℃, T2 = 50 ℃, T3 = 100 ℃, T4 = 50 ℃
Solution – 1st boundary condition
4 divisions
5 divisions
9 divisions
Solution – 2nd boundary condition
T1 = 0 ℃, T2 = 50 ℃, T3 = 100 ℃, q”4 = 50 W/m2,k = 15.1 W/m*K
4 divisions
5 divisions
9 divisions
Solution – 3rd boundary condition
T1 = 100 ℃, q”2 = 75 W/m2, T3 = 50 ℃, q”4 = -25 W/m2,k = 15.1 W/m*K
4 divisions
5 divisions
9 divisions
Numerical Solution Software is very complex
Setting up equations is the hard part
Matrix increases size on order of divisionssquared
Calculations take a long time for large veryfine mesh
Conclusions
hand3.bmp
Appendix –Hand Work
hand2.jpg
hand1.bmp
Appendix –Hand Work
hand5.bmp