Water Resources Planning andManagement
Daene C. McKinney
System PerformanceIndicators
Reservoir Management
Important task forwater managers aroundthe world.
Models used to
simulate or optimizereservoir performance
design reservoirs orassociated facilities(spillways, etc.).
E020121n
Fig 1-2 Attaturk dia-4.jpg
Operating Rules
Allocate releases among purposes, reservoirs, and timeintervals
In operation (as opposed to design), certain systemcomponents are fixed:
Active and dead storage volume
Power plant and stream channel capacities
Reservoir head-capacity functions
Levee heights and flood plain areas
Monthly target outputs for irrigation, energy, water supply, etc
Others are variable: Allocation of
stored water among reservoirs
stored and released water among purposes
stored and released water among time intervals
Standard Operating Policy
Qt
X2t
K
St
Rt
X1t
Dark vertical
Dt
Rt
Dt
Dt
Dt+K
St+ Qt
Release availablewater &
deficits occur
Release demand
spill excess
Sufficient waterto meet demands
Reservoir fillsand demand met
Release demand &
demand met
Demand
Reservoir operating policy - releaseas function of storage volume andinflow
RRt(St,Qt)
Hedging Rule
Reduce releases in times of drought (hedging) to save waterfor future releases in case of an extended period of lowinflows.
E020108x
hedginghedging
DD
KK
Done?
No
System SimulationLoucks (Chapter 7, Section 9)
Create network representation of system
Need inflows for each period for each node
For each period:
Perform mass balance calculations for each node
Determine releases from reservoirs
Allocate water to users
Start
t = 0
St = S0
St+1 St +Qt -Rt
Stop
Yes
t = + 1
Read Qt
File
Compute
RtXiti=1,…n
Data
Storage
Qt
X3t
K
St
R
X2t
X1t
Operating Policy
Allocation Policy
Example
Using unregulated river for irrigation
Proposed Reservoir
Capacity: K = 40 million m3 (active)
Demand: D = 30  40   45 million m3
Winter instream flow: 5 mil. m3 min.
45 year historic flow record available
Evaluate system performance for a 20 yearperiod
Simulate
Two seasons/year, winter (1) summer(2)
Continuity constraints
Operating policy
Qt
X2t
K
St
R
X1t
Dark vertical
Flow statistics
R2,t
Dt
Dt
Dt+K
S2,t+ Q2,t
K
Release availablewater
Releasedemand
Release demand
+ excess
Summer Operating Policy
Storage at beginning of summer
Performance Evaluation
How well will the system perform?
Define performance criteria
Indices related to the ability to meet targets and theseriousness of missing targets
Simulate the system to evaluate the criteria
Interpret results
Should design or policies be modified?
Performance Criteria - Reliability
Reliability – Frequency with which demand was satisfied
Define a deficit as:
Then reliability is:
where n is the total number of simulation periods
Performance Criteria - Resilience
Resilience = probability that once the system is in a period ofdeficit, the next period is not a deficit.
How quickly does system recover from failure?
Performance Criteria - Vulnerability
Vulnerability = average magnitude of deficits
How bad are the consequences of failure?
Simulate the System
System
Policies
Input
Output
x
g(x)
y
h(y)
Reservoir operating policy
Allocation policy
Hydrologic
time series
Model
output
Model
Uncertainty
Deterministic process
Inputs assumed known.
Ignore variability
Assume inputs are wellrepresented by average values.
Over estimates benefits andunderestimates losses
Stochastic process
Explicitly account for variabilityand uncertainty
Inputs are stochastic processes
Historic record is one realizationof process.
FY(y)
Simulate the System
Policies
Simulate each
Input sequence
X
FX(x)
x
g(x)
y
h(y)
y
h(y)
Compute
statistics of
outputs
System
Generate multiple
input sequences
x
g(x)
Get multiple
output sequences
Reservoir operating policy
Allocation policy
Model
Distribution of inputs
The Simulation
Simulate reservoir operation
Perform 23 equally likely simulations
Each simulation is 20 years long
Each simulation uses a different sequence of inflows(realization)
Example – Realization 1
Rmin
0.5
K
4
Realization
1
Winter
Summer
Year
S1y
Q1y
S+Q
R1y
S2y
Q2y
S+Q
D2y
R2y
Deficit
1
0.000
4.740
4.740
0.740
4.000
1.805
5.805
3.000
3.000
0.000
2
2.805
2.918
5.723
1.723
4.000
1.499
5.499
3.200
3.200
0.000
3
2.299
2.747
5.045
1.045
4.000
1.548
5.548
3.400
3.400
0.000
4
2.148
2.819
4.966
0.966
4.000
1.753
5.753
3.600
3.600
0.000
5
2.153
3.871
6.023
2.023
4.000
2.229
6.229
3.800
3.800
0.000
6
2.429
3.585
6.015
2.015
4.000
2.235
6.235
4.000
4.000
0.000
7
2.235
4.736
6.971
2.971
4.000
2.984
6.984
4.100
4.100
0.000
8
2.884
3.275
6.159
2.159
4.000
2.212
6.212
4.200
4.200
0.000
9
2.012
3.188
5.200
1.200
4.000
2.666
6.666
4.300
4.300
0.000
10
2.366
3.401
5.767
1.767
4.000
1.240
5.240
4.300
4.300
0.000
11
0.940
3.811
4.750
0.750
4.000
2.371
6.371
4.400
4.400
0.000
12
1.971
3.435
5.407
1.407
4.000
2.421
6.421
4.400
4.400
0.000
13
2.021
2.460
4.481
0.500
3.981
1.317
5.298
4.400
4.400
0.000
14
0.898
2.377
3.275
0.500
2.775
1.896
4.671
4.400
4.400
0.000
15
0.271
3.692
3.963
0.500
3.463
1.831
5.293
4.500
4.500
0.000
16
0.793
3.302
4.095
0.500
3.595
1.300
4.895
4.500
4.500
0.000
17
0.395
2.548
2.944
0.500
2.444
2.047
4.491
4.500
4.491
-0.009
18
0.000
2.454
2.454
0.500
1.954
1.658
3.612
4.500
3.612
-0.888
19
0.000
3.139
3.139
0.500
2.639
2.768
5.407
4.500
4.500
0.000
20
0.907
2.910
3.816
0.500
3.316
1.445
4.762
4.500
4.500
0.000
Deficit
-0.897
Number
2.000
%
0.100
Results
Average failure frequency = 0.165
Average reliability = 1- 0.165 = 0.835 = 83.5%
Actual failure frequency  [0,  0.40]
Actual Reliability  [100%,  60%]