Content Based ImageRetrieval
Romit Das · Ryan Scotka
Go to Google Image Search Home
The image “http://omega.widows-web.com/Beatles/McCartney.jpg” cannot be displayed, because it contains errors.
The image “http://www.mit.edu/people/swanson/liem/May%2028%202002/1%20Ninja.jpg” cannot be displayed, because it contains errors.
ninjaparty
GIS Problems
Search based on filename
Verbatim match
Noun replacement
Potential for Abuse (Google Hack)
Possible Solutions
Metadata
Standards
Re-index existing images
Manual Classification
Time
Content-based Classification
CBIR – Training
1.Choose features to distinguish images.
2.Extract said features.
3.Apply statistical method to modelfeatures.
4.Categorize based on textual description.
Example
The image “http://www.mit.edu/people/swanson/liem/May%2028%202002/1%20Ninja.jpg” cannot be displayed, because it contains errors.
Dimensions
Color Frequencies
Spatial Distribution
200 x 200 + Mostly flesh tones + Flesh tones concentrated in the center =
baby
Author’s Feature Set
Feature Set (6 dimensions):
Color averages (LUV)
High-frequency energy bands
“Effectively discern local texture”
Wavelet transform on 4x4 blocks
Use HL, LH, and HH “high energy bands”
Use the LL for lower resolution analysis
Author’s Implementation
Statistical Modeling
Use machine learning to build concepts
Concept = Paris
Training Set =
The image “http://cemail2.ce.ntu.edu.tw/photo/tower/tower3bThe%20Eiffel%20Tower,%20Paris%20(%20301m%20).jpg” cannot be displayed, because it contains errors.
The image “http://www.photo.net/philg/digiphotos/200101-d30-paris/paris-traffic.half.jpg” cannot be displayed, because it contains errors.
The image “http://www.justdesserts.com/bay/images/croissant.jpg” cannot be displayed, because it contains errors.
Markov Models
Take known facts
Deduce hidden/unknown data
Markov Model Example
Given:
Queues of people, shelves, price labels,disgruntled workers
Possible Results:
Post office
Supermarket
Record Store
Markov Model Example
Given:
Queues of people, shelves, price labels,disgruntled workers, food products
Possible Results:
Post office
Supermarket
Record Store
Ninja Model
ninjaparty
Person, outdoors
Ninja Model
ninjaparty
People, ninjas, outdoor
Ninja Model
ninjaparty
People, ninjas, weapons,outdoors
Ninja Markov Model
ninjaparty
ninjaparty
ninjaparty
Person, outdoors
People, ninjas, outdoors
People, ninjas, outdoors
weapons, class photo
Creating Concepts
Training Concept
Created from hand-picked images
Must choose statistically significant trainingsize
Resulting Concept
Used in automatic cataloging of future images
Observations
Images are associated with multipleconcepts.
Not foolproof
Example:
ninjaparty
People, ninjas, outdoors
weapons, class photo
Advantages
Automatic categorization
Disadvantages
False positives
Concepts may require a vast amount ofimages
Increases training time
Dissimilar images needed for training of aconcept
Future Additions
Further refinement of conflicting semantics
Weights assigned to classifications
Our Implementation
Perform classification with alternatelearners (Weka)