EE141
© Digital Integrated Circuits2nd
Introduction
1
EE5780 AdvancedVLSI Computer-Aided DesignEE5780 AdvancedVLSI Computer-Aided Design
wetorangeSmall
Dr. Shiyan Hu
Office: EERC 518
Adapted and modified from Digital Integrated Circuits: A Design Perspective
by Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic.
IntroductionIntroduction
EE141
© Digital Integrated Circuits2nd
Introduction
Class Time and Office HourClass Time and Office Hour
Class Time: MWF 14:05-14:55 (EERC 216)
Office Hours: MWF 15:00-15:50 or by appointment, office:EERC 518
Textbook (suggested)
Handbook of Algorithms for Physical Design Automation, Charles J. Alpert,Dinesh P. Mehta, Sachin S. Sapatnekar, CRC Press, 2008
Grading:
Homework    25%
Project          25%
Exams          50%
2
EE141
© Digital Integrated Circuits2nd
Introduction
Course WebsiteCourse Website
http://www.ece.mtu.edu/faculty/shiyan/EE5780Spring12.htm
Contact information of instructor
Email: shiyan@mtu.edu
EERC 518
Instructor’s webpage: http://www.ece.mtu.edu/faculty/shiyan
3
EE141
© Digital Integrated Circuits2nd
Introduction
4
IntroductionIntroduction
Why is designingdigital ICs differenttoday than it wasbefore?
What is thechallenge?
wetorangeSmall
EE141
© Digital Integrated Circuits2nd
Introduction
The Transistor Revolution
First transistor
Bell Labs, 1948
\\Plume\USERS\bushnell\vlsidesign\pointcontact.jpg
EE141
© Digital Integrated Circuits2nd
Introduction
The First Integrated Circuit
First IC
Jack Kilby
Texas Instruments
1958
\\Plume\USERS\bushnell\vlsidesign\firstIC.jpg
EE141
© Digital Integrated Circuits2nd
Introduction
7
 Intel 4004 Microprocessor Intel 4004 Microprocessor
1971
1000 transistors
1 MHz operation
EE141
© Digital Integrated Circuits2nd
Introduction
Intel 8080 Microprocessor
\\Plume\USERS\bushnell\vlsidesign\intel8080.jpg
1974
4500 transistors
EE141
© Digital Integrated Circuits2nd
Introduction
9
Intel Pentium Microprocessor
PentiumII
2000
42 million transistors
1.5 GHz
EE141
© Digital Integrated Circuits2nd
Introduction
Modern ChipModern Chip
EE141
© Digital Integrated Circuits2nd
Introduction
11
Basic Components In VLSI CircuitsBasic Components In VLSI Circuits
Devices
Transistors
Logic gates and cells
Function blocks
Interconnects
Local interconnects
Global interconnects
Clock interconnects
Power/ground nets
EE141
© Digital Integrated Circuits2nd
Introduction
CMOS transistorsCMOS transistors
ch02-A12
ch02-A12
3 terminals in CMOS transistors:
 G: Gate
 D: Drain
 S: Source
nMOS transistor/switch X=1 switch closes (ON) X=0 switch opens (OFF)
pMOS transistor/switch X=1 switch opens (OFF) X=0 switch closes (ON)
EE141
© Digital Integrated Circuits2nd
Introduction
An Example: CMOS InverterAn Example: CMOS Inverter
X
X’F =X’
Logic symbol
X
X’F =X’
+Vdd
GRD
Transistor-level schematic
Operation:
 X=1  nMOS switch conducts (pMOS is open)   and draws from GRD  F=0
 X=0  pMOS switch conducts (nMOST is open)   and draws from +Vdd  F=1
EE141
© Digital Integrated Circuits2nd
Introduction
14
Cross-Section of ChipCross-Section of Chip
EE141
© Digital Integrated Circuits2nd
Introduction
15
Moore’s LawMoore’s Law
lIn 1965, Gordon Moore noted that thenumber of transistors on a chip doubledevery 18 to 24 months.
lHe made a prediction thatsemiconductor technology will double itseffectiveness every 18 months
lNot true any more
lInterconnect delay dominates
lVariations
EE141
© Digital Integrated Circuits2nd
Introduction
16
Moore’s law in MicroprocessorsMoore’s law in Microprocessors
4004
8008
8080
8085
8086
286
386
486
Pentium® proc
P6
0.001
0.01
0.1
1
10
100
1000
1970
1980
1990
2000
2010
Year
Transistors (MT)
2X growth in 1.96 years!
Transistors on Lead Microprocessors double every 2 years
Transistors on Lead Microprocessors double every 2 years
Courtesy, Intel
EE141
© Digital Integrated Circuits2nd
Introduction
17
ITRS Prediction
EE141
© Digital Integrated Circuits2nd
Introduction
18
FrequencyFrequency
P6
Pentium ® proc
486
386
286
8086
8085
8080
8008
4004
0.1
1
10
100
1000
10000
1970
1980
1990
2000
2010
Year
Frequency (Mhz)
Lead Microprocessors frequency doubles every 2 years
Lead Microprocessors frequency doubles every 2 years
Doubles every2 years
Courtesy, Intel
Not trueany more!
EE141
© Digital Integrated Circuits2nd
Introduction
19
0.18
interconnect gif
Source: Gordon Moore, Chairman Emeritus, Intel Corp.
0
50
100
150
200
250
300
Technology generation (m)
Delay (psec)
Transistor/Gate delay
Interconnect delay
0.8
0.5
0.25
0.25
0.15
0.35
Interconnects DominateInterconnects Dominate
EE141
© Digital Integrated Circuits2nd
Introduction
20
Power DissipationPower Dissipation
P6
Pentium ® proc
486
386
286
8086
8085
8080
8008
4004
0.1
1
10
100
1971
1974
1978
1985
1992
2000
Year
Power (Watts)
Lead Microprocessors power continues to increase
Lead Microprocessors power continues to increase
Courtesy, Intel
EE141
© Digital Integrated Circuits2nd
Introduction
21
Power is major problemPower is major problem
5KW
18KW
1.5KW
500W
4004
8008
8080
8085
8086
286
386
486
Pentium® proc
0.1
1
10
100
1000
10000
100000
1971
1974
1978
1985
1992
2000
2004
2008
Year
Power (Watts)
Power delivery and dissipation will be prohibitive
Power delivery and dissipation will be prohibitive
Courtesy, Intel
EE141
© Digital Integrated Circuits2nd
Introduction
22
Power densityPower density
4004
8008
8080
8085
8086
286
386
486
Pentium® proc
P6
1
10
100
1000
10000
1970
1980
1990
2000
2010
Year
Power Density (W/cm2)
Hot Plate
Nuclear
Reactor
Rocket
Nozzle
Courtesy, Intel
EE141
© Digital Integrated Circuits2nd
Introduction
Chip ThermalChip Thermal
23
EE141
© Digital Integrated Circuits2nd
Introduction
24
System Specification
Functional Design
Logic Design andSynthesis
e.g., Verilog
X=(AB*CD)+(A+D)+(A(B+C))
Y=(A(B+C))+AC+D+A(BC+D))
VLSI Design CycleVLSI Design Cycle
EE141
© Digital Integrated Circuits2nd
Introduction
25
Physical Design
Fabrication
Packaging
diamond
VLSI Design Cycle (cont.)VLSI Design Cycle (cont.)
EE141
© Digital Integrated Circuits2nd
Introduction
26
Given circuit after logic synthesis, to convert it into alayout (i.e., determine the physical location of eachgate and the interconnects between gates).
Physical DesignPhysical Design
PD
EE141
© Digital Integrated Circuits2nd
Introduction
27
Nanoscale ChallengesNanoscale Challenges
Interconnect-limited designs
Interconnect performance limitation
Interconnect modeling complexity
Interconnect reliability (signal integrity)
Power barrier
High degree of on-chip integration
Complexity and productivity
System on a chip
Variations
EE141
© Digital Integrated Circuits2nd
Introduction
28
Robust Design For VariationsRobust Design For Variations
Variations
The difference between the designed value and the actualvalue
Robust design
Mitigate or compensate for variations
Robustness for lithography-induced variations
EE141
© Digital Integrated Circuits2nd
Introduction
29
29
Chip Design and FabricationChip Design and Fabrication
LithographyProcess
Designed ChipLayout
cmp_xsctn_me_gatech_edu
FabricatedChip
EE141
© Digital Integrated Circuits2nd
Introduction
30
30
Photo-Lithography ProcessPhoto-Lithography Process
oxidation
optical
mask
process
step
photoresist coating
photoresist
removal (ashing)
spin, rinse, dry
acid etch
photoresist
stepper exposure
development
Typical operations in a single
photolithographic cycle (from [Fullman]).
EE141
© Digital Integrated Circuits2nd
Introduction
31
31
Lithography SystemLithography System
Illumination
Mask
Objective Lens
Aperture
Wafer
193nmwavelength
45nm
features
EE141
© Digital Integrated Circuits2nd
Introduction
32
32
Mask v.s. PrintingMask v.s. Printing
FeatSizeLimit02-Morph01
0.25µ
FeatSizeLimit02-Morph02
0.18µ
FeatSizeLimit02-Morph03
0.13µ
FeatSizeLimit02-Morph04
90-nm
FeatSizeLimit02-Morph05
65-nm
FeatSizeLimit-Mask
Layout
What youdesign isNOT whatyou get!
EE141
© Digital Integrated Circuits2nd
Introduction
33
33
MotivationMotivation
Chip design cannot be fabricated
Gap
Lithography technology: 193nm wavelength
VLSI technology: 45nm features
Lithography induced variations
Impact on timing and power
lEven for 180nm technology, variations up to 20x inleakage power and 30% in frequency were reported.
Technology nodeTechnology node
130nm130nm
90nm90nm
65nm65nm
45nm45nm
Gate length (nm)Gate length (nm)
Tolerable variation (nm)Tolerable variation (nm)
9090
5.35.3
5353
3.753.75
3535
2.52.5
2828
22
Wavelength (nm)Wavelength (nm)
248248
193193
193193
193193
EE141
© Digital Integrated Circuits2nd
Introduction
34
34
Gap: Lithography Tech. v.s. VLSI Tech.Gap: Lithography Tech. v.s. VLSI Tech.
C:\Documents and Settings\Shiyan Hu\Desktop\PAINT_BRUSH_.jpg
FeatSizeLimit-Mask
193nm
28nm, tolerabledistortion: 2nm
Increasing gap Printability problem (andthus variations) moresevere!
EE141
© Digital Integrated Circuits2nd
Introduction
35
SummarySummary
CAD is necessary to design a chip with billiontransistors.
Digital integrated circuit design challenges innanoscale regime
Timing
Power
Reliability
Short design turn-around time