Non-Fermi Liquid Behavior inWeak Itinerant Ferromagnet MnSi
Nirmal  Ghimire
April 20, 2010
In Class Presentation
Solid State Physics II
Instructor: Elbio Dagotto
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Introduction
 Fermi Liquid Theory
Non-Fermi Liquid System
Non-Fermi Liquid State in MnSi
 Magnetic Ordering and Spin Structure
Conclusion
OutlineOutline
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
IntroductionIntroduction
There are two basic mechanism for the observed magnetic moments inmagnetic materials
Local magnetic moments
Itinerant magnetic moments
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Hesinberg.jpg
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\E.C.Stoner.jpg
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Rhodes-Wohlfarth plot.jpg
W. K. Heisenberg
(1901-1976)
E. C. Stoner
(1899-1968)
Cases of completelocalization orcompleteionization arehardly ever found
Both phenomenaexist side by side: Aunified theory ofsolid statemagnetism is needed
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
IntroductionIntroduction
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Landau.jpg
L. D. Landau
(1908-1968)
1957: Fermi Liquid Theory
Model for metallic state:
Pauli exclusion principle + screening effect
Successfully described some near or weakferromagnetic d-electron metals
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Seamen et al.jpg
MnSi, a weakly magnetic d-electron compound, also shows Non-Fermi Liquid (NFL) behavior
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Introduction
Fermi Liquid Theory
Non-Fermi Liquid System
Non-Fermi Liquid State in MnSi
Magnetic Ordering and Spin Structure
Conclusion
OutlineOutline
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Fermi-Liquid TheoryFermi-Liquid Theory
Quasiparticle excitation of interacting Fermi system
Fermi liquids have spin     and obey Fermi statistics
One to one correspondence of quasiparticle and free electron:
Interaction of the quasiparticle
Energy of the system
Energy of N quasiparticles
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Fermi-Liquid TheoryFermi-Liquid Theory
 Energy of a quasiparticle is:
Energy of quasiparticle at T =0
Mean field effect of interactionwith other quasi particles
Scattering amplitude of two quasi particles
Accounts for the deviation of density of states from theequilibrium value nFermi (n- nFermi)
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Fermi Liquid TheoryFermi Liquid Theory
 Total energy:
 Prediction:
Electrical resistivity of CeCl3
Specific heat of CeCl3
Experimental confirmation
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Non-Fermi Liquid SystemNon-Fermi Liquid System
 Physical Properties:
Experimental confirmation
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Introduction
Fermi Liquid Theory
Non-Fermi Liquid System
Non-Fermi Liquid State in MnSi
Magnetic Ordering and  Spin Structure
Conclusion
OutlineOutline
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Non-Fermi Liquid State in MnSiNon-Fermi Liquid State in MnSi
H:\fig1.jpg
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Structure of MnSi
B20 Cubic structure with a =4.588 Å
Lacks space inversion symmetry
Consequence of the broken inversion symmetry
Helical spin density wave
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Non-Fermi Liquid State in MnSiNon-Fermi Liquid State in MnSi
Magnetic phase transition at Tc=29.1 fromparamagnetic to helical magnetic structure
Wavelength of spiral = 180 Å in (111)direction
Magnetic phase diagram
H:\fig2.jpg
Magnetic properties:
Curie-Weiss fit of susceptibility: Effective magnetic moment = 1.4 μB
Observation: spontaneous magnetic moment  of 0.4 μat 0K.
Weak itinerantferromagnet
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Non-Fermi Liquid State in MnSiNon-Fermi Liquid State in MnSi
Variation of resistivity with temperature
Resistivity drops monotonicallywith decreasing temperature
H:\fig3a.jpg
5.55Kbar
8.35Kbar
8.35Kbar
14.3Kbar
15.5Kbar
Peak position indicates thetransition temperature
Below pc=14.6 Kbar, there isquadratic behavior
At pcquadratic behaviorcollapses
Above pc, temperature variationof resistivity is slower thanquadratic
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Non-Fermi Liquid State in MnSiNon-Fermi Liquid State in MnSi
C:\Documents and Settings\Administrator\Desktop\fig4.jpg
Comparison between experiment and FFL Theory
High T: FFL model in agreementwith experiment
Low T: T dependence deviatesfrom experimental observation
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Introduction
Fermi Liquid Theory
Non-Fermi Liquid System
Non-Fermi Liquid State in MnSi
Magnetic Ordering and  Spin Structure
Conclusion
OutlineOutline
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
 Magnetic Order in NFL State Magnetic Order in NFL State
Results from Neutron Scattering experiment:
Critical pressure 14.6 Kbar
Magnetic Ordering above critical pressure?
 Helical with same periodicity and long range order
Unusual thing:
Considerable degree of disorderness in thedirection of magnetic propagation vector
A broad angular distribution around <110>:not expected to be favored by the crystal fieldin cubic symmetry
There exists magnetic moment even above pc
Partial magnetic ordering
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Non-Trivial Spin Structure!Non-Trivial Spin Structure!
Two Possible Scenarios for the partial magnetic ordering
Breaking of helical structureinto multi-domain state
Unlocking of helix direction from<111> and no strict directionalorder
Result of polarizedneutron scattering : partialorder on local scale is notrelated to helical structure
No experimental ortheoretical support
Any otherpossibility?
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Non-Trivial Spin Structure!Non-Trivial Spin Structure!
Quantum critical phenomena?
NFL resistivity emerges under pressure without quantum criticality
Spin ordering other than plain pining of thehelix or a multi-domain state
A non-trivial spin structure!!
C:\Documents and Settings\Administrator\Desktop\mn12 ac.jpg
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
ConclusionConclusion
MnSi , a weak itinerant ferromagnet,  shows a        behavior ofresistivity which is not consistent with current model of itinerantferromagnetism
Temperature dependence of resistivity may lie in the novel form ofmagnetic ordering
Currently, there is no theoretical account for the NFL resistivity andhow it is related to the partial magnetic ordering.
There is need of more experimental evidences.
C:\Documents and Settings\Administrator\My Documents\Nirmal Courses\Courese_Spring 2010\Physics 672\Project 2\Presentation\Background pict.jpg
Thank You