Challenges in operastional Tsunami forecasting

New areas of research
Diego Arcas, Chris Moore, Stuart Allen
NOAA/PMEL
University of Washington
NOAA
National Oceanic and Atmospheric Administration
Ocean andAtmosphericResearch
NationalWeatherService
PacificTsunamiWarningCenter
Alaska/WestCoast TsunamiWarningCenter.
NOAA Centerfor TsunamiResearch
Tsunami Generation
Cartoon showing tectonic stress on a subducting plate.
C:\Users\Diego\Desktop\OkalSynoMelbo_pics\Picture 2.png
Physical Characteristics of a Tsunami in Deep Water
 Maximum Amplitude, z: between a few cms and1.5 meters.
 Typical Wavelength: = 300 km  (period ~ 600 s-3000 s)
 Propagation speed: Speed depends on the ocean depth, H.
In practice: H=5 Km, v=220 m/s  (~=800 Km/h)
Assumptions in the Non-linear Shallow Water Equations
C:\Users\Diego\Desktop\OkalSynoMelbo_pics\Picture 2.png
Continuity Equation:
X-momentum  equation:
Y-momentum  equation:
Z-momentum  equation:
Hydrostatic Approximation:
Assumptions in the Non-linear Shallow Water Equations
Hydrostatic Approximation:
X-momentum  equation:
Y-momentum  equation:
Assumptions in the Non-linear Shallow Water Equations
We assume constant velocityprofiles for u and v along z
Now we use the surface kinematic boundary condition
And the bottom boundary condition
We have rewritten w interms of u,v and h= +d
Continuity  equation:
Assumptions in the Non-linear Shallow Water Equations
Replacing the values of w on the bottom and at the watersurface in the depth integrated continuity equation andgrouping terms together we get:
plus the two momentum equations:
Assumptions in the Non-linear Shallow Water Equations
-Long wavelength compared to the bottom depth.
-Uniform vertical profile of the horizontal velocity components.
-Hydrostatic pressure conditions.
-Negligible fluid viscosity.
Assumptions in the Non-linear Shallow Water Equations
Picture 11.png
C:\Users\Diego\Desktop\DART.gif
Confirmation of the estimated values ofwavelength, amplitude and period of tsunamiwaves
Non-linear Shallow Water Wave Equationsseem to provide a good description of thephenomenon.
Assumptions in the Non-linear Shallow Water Equations
F:\Figure1_new.png
Arcas & Wei, 2011, “Evaluation of velocity-relatedapproximation in the non-linear shallow  water equations forthe Kuril Islands, 2006 tsunami event at Honolulu, Hawaii”,GRL, 38,L12608
Characteristic Form of the 1D Non-linear Shallow Water Equations
Riemann Invariants:
Eigenvalues:
Typical Deep Water Values:
Illustration of Deep Water Linearity
Illustration of Deep Water Linearity
F:\Picture 5.png
Linearity allows for the reconstruction of an arbitrarytsunami source using elementary building blocks
Unit source deformation
Forecasting Method
GPS_mes_Unit_def.png
West Pacific
East Pacific
Locations of the unit sources for pre-computed tsunami events.
C:\Users\Diego\Desktop\miscellaneous\Aguilas_ppt\unitsourcesright.jpg
C:\Users\Diego\Desktop\miscellaneous\Aguilas_ppt\unitsourcesleft.jpg
Forecasting Method
Unit source propagation of a tsunami event  in the Caribbean
Forecasting Method
Tsunami Warning: DART Systems
C:\Users\Diego\Desktop\miscellaneous\Aguilas_ppt\DART_Array.png
Forecasting Method: DART Positions
F:\Picture 5.png
Forecasting Method: Inversion from DART
t1
t2
teq
t1
t2
t1
t2
teq
teq
t1
t2
Soft exclusion sources
Hard exclusion sources
Valid sources
Source Selection for DARTdata Inversion
DART
EPICENTER
DART data
t1
t2
t4
t3
Rupture length is constrained but aconnected solution is not possible at thispoint. Seismic solution is used.
DART 1
DART 2
EPICENTER
t1
t2
teq
t3
t4
teq
t1
t2
teq
t1
t2
teq
t1
t2
t4
t3
An  uncombined connectedsolution is possible now.
DART 1
DART 2
EPICENTER
1 hr
3 hr
0.5 hr
2 hr
0 hr
0hr
1 hr
3 hr
2 hr
.5 hr
A partially combined connectedsolution is possible at this point.
DART 1
DART 2
EPICENTER
1 hr
3.5 hr
0.5 hr
2.5 hr
0 hr
0hr
1 hr
3.5 hr
2.5 hr
.5 hr
DART 1
DART 2
A fully combined  and connected solution ispossible now.
EPICENTER
Forecasted Max Amplitude Distribution (Japan 2010)
Energy_plot20110311.png
Community Specific Forecast Models
F:\Picture 4.png
F:\Picture 2.png
Inundation ForecastModel Development
Tsunami inversion based on satellite altimetry: Japan 2010
F:\Envisat.png
F:\Jason.png
F:\altimetry.png
Forecasting Challenges:
Definition of Tsunami Initial Conditions
Forecasting Challenges:
Definition of Tsunami Initial Conditions