Wireless Assistive Control System
Project leader: Benjamin Danziger, EE
Todd Bentley, ISE
Jim Corcoran, CE
Jay Radhakrishnan, EE
Peter Drexel, EE
Vianna Mullar, EE
DSC01290
Video
Agenda
Customer Requirements
System Architecture
Project Overview
Front End
Strap
Bioradio
Testing
Signal Processing
RC vehicle
Design Summary
Budget
Scheduling
Future Improvements
Final Summary
Project Criteria
Mission: Prove a control system can model bio-signals
Goal: Design an interactive proof of concept thatprospective students can use at open houses
Purpose: show off the Biomedical Engineering Option
Must be safe and robust!
Commissioned by the Electrical EngineeringDepartment
Project Overview
RC Vehicle controlled byElectromyographic(EMG) signals
Convert surface EMGsignals from humanmuscle to computercommands
Send commandswirelessly to an RCVehicle
http://mail.google.com/mail/?attid=0.1&disp=emb&view=att&th=119f0061d260e48e
Customer Requirements
Strap
Eliminate movement artifact/transients/noise
Simplify electrode application
Signal Processing
Properly distinguish between the muscle groups
Robust Control Algorithm
Wireless Output
RC Vehicle
Bio-signals must control the vehicle's movements
Visual and Audible feedback
EMGplacementDia.gif
System Architecture
Filter
Control System
USB
RF Transmitter
RF Receiver
MicroProcessor
DC Motor(Forwards/Backwards)
DC Motor
(Left Right)
Lights
Audio
Right Bicep
Right Thenar
Left Bicep
Left Thenar
BioRadio
150 TX
BioRadio
150 RX
Design Summary: Front End
Strap Design
Originally wanted glove-like design
Infeasible – 25 dimensions on human handand arm
Anthropometric Design
Adjustable from 5th thru 95th percentilebody types.
Expedites application of EMG sensors.
Nylon material construction
Incredibly durable
Nylon tubing hides wires and preventsmovements
Design Summary: Front End
EMGs
Non-invasive, uses surface electrodes
Institute Review Board (IRB)
Need approval for human testing
Use of BioRadio
Collects up to 8 bio-signal channels(we’re using 4)
Safely collects all data
Transmits the data wirelessly
Data Acquisition Testing
Muscle A
Muscle B
Acquired data from 5 males and 5females
Recorded Body Mass Index (BMI)
Tested Normal Weight, Overweightand Obese
Asked if they went to the gym
Ensured action could beperformed and recorded byBioRadio150 on all individuals
Observe Crosstalk
Tested strap
Confirmed EMG frequency range
Fatigue Factor
Design Summary: Signal Processing
Custom
MovingAverageFilter
Normalization
(Finds max value)
Difference
(Forward-Reverse)
(Right-Left)
LevelCoding
All on or
All off
Data
Packet
Wireless TX.jpg
Customer Requirements met:
Channels distinguished
EMG based algorithm
Wireless output
Design Summary: RC Vehicle
Receives commands by an RF Receiver
Powered by 6 NiMH AA batteries
Uses a ATtiny2313 Microprocessor
Uses two DC motors (one for turning, one foracceleration), each with its own H-bridge
Visual Feedback: Uses LED system
Audible Feedback: ChipCorder IC is used to play differentsound effects correlating to the user’s actions
Design Summary: RC Vehicle
Light Scheme on RC Car
Full System Testing
Live System Tests
Used all members of the team and several IRBparticipants
Ensured all 4 commands were functional
Drove car around the Wetlab
Budget
Final expenditure is
$411.32
Initial cost was $339.59
Does not include theBioRadio
Budget~ $1000
http://mail.google.com/mail/?attid=0.4&disp=emb&view=att&th=119f0061d260e48e
Schedule
Strap prototyping completed end of week 5
Had motion and control end of week 7, preliminarydemo for customer
IRB testing completed end of week 9
Final construction of RC car prototype by week 10
Difficulties and Future Improvements
Future Improvements:
Electrode Pairs
Implement DSP
Use servo instead of DC motor
RC Vehicle with sharper turning radius
norotrod
Difficulties:
Obtaining a clean signal
Parallel processing in “Real time”
Final Summary
Meets all Customer Requirements
Within budget
Cost= $411.32
Budget~ $1000
We will let YOU determine if it’s a success.
Questions?
?ui=1&attid=0
Do YOU have any Questions?